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Abstract

Computational Fluid Dynamics (CFD) has been employed for the optimization of the mixing ef®ciency of a Kenics static mixer. A series

of numerical simulations has been undertaken for non-creeping ¯ow conditions to determine the optimal twist angle of the mixing elements.

The mixer ef®ciency has been assessed by considering the computed pressure drop along the mixer and the size of the ¯uid structures

remaining at the mixer outlet. Contrary to the results of previous investigations for creeping ¯ows, it is shown that for the present non-

creeping ¯ow conditions, the twist angle of 1808 employed in the standard Kenics design is optimal. It is demonstrated that CFD provides

an invaluable tool for mixer design optimization, despite the signi®cant computational resources necessary to undertake the present study.
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1. Introduction

A wide range of industrial applications for ¯uid mixing

exists, using a variety of constituent ¯uids, physical mixing

methods and underlying mixing processes. While mechan-

ical agitators are commonly employed for batch mixing,

static mixers are often preferred for continuous mixing

applications. Static mixers generally consist of a series of

motionless elements inserted into a length of pipe, with the

energy for mixing being derived from the pressure loss

incurred as the process ¯uids ¯ow through the elements.

Since the range of applications for static mixers is very

broad, a variety of element designs is available from various

manufacturers [1±3].

In the present study, we will restrict our attention to the

mixing of ¯uids in the Kenics static mixer (manufactured by

Chemineer, North Andover, MA) [4]. This mixer design has

been employed in the chemical process industry since the

mid-1960s, mainly for the in-line blending of liquids under

laminar ¯ow conditions. The standard Kenics mixer is

comprised of a series of mixing elements, each consisting

of a short helix of length L equal to three times the pipe

radius a (i.e. aspect ratio L/a � 3) with a twist angle of 1808.
The mixing elements are arranged in pairs, each pair com-

prised of a right-handed and left-handed element arranged

alternately in the pipe. The leading edge of each element is at

908 to the trailing edge of the preceding element. For the

present study, a Kenics mixer with six elements (i.e. three

element pairs) is considered, as illustrated in Fig. 1.

A number of experimental investigations of the Kenics

mixer have been undertaken, generally with the purpose of

measuring the pressure drop along the mixer [1±8]. Limited

experimental data are available that provide insight into the

¯ow behaviour when the velocity (or alternatively, ¯ow rate)

is suf®ciently small. For such creeping ¯ows, for which the

Reynolds number is small (Re� 1), it has been observed

that the ¯ow division at the leading edge of each mixing

element leads to an exponentially increasing number of

essentially parallel striations [5,9]. Nevertheless, detailed

quantitative measurements of mixing ef®ciency for different

mixer geometries and ¯ow conditions have not been

reported. The geometrical characteristics of the Kenics

mixer have therefore been determined by empirical con-

siderations. For example, an angle of 908 between elements

is considered optimal because each mixing element cuts the

striations perpendicularly.

The numerical simulation of ¯uid mixing is of increasing

interest to the process industry. Interest in Computational

Fluid Dynamics (CFD) as a design tool has been spurred

both by recent performance increases in computer hardware,
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and by the availability of advanced software packages for

complex ¯ow simulation. The numerical simulation of ¯uid

mixing in static mixers can be performed by resolving the

governing Navier±Stokes equations to determine the ¯ow

velocity and pressure, while the mixing process is best

analyzed by calculating the trajectories of a large number

of particles through the mixer.

To solve accurately the Navier±Stokes equations govern-

ing the complex three-dimensional ¯ow in a Kenics static

mixer requires substantial computational resources.

(Indeed, the analysis of one ¯ow condition for a single

speci®ed geometry can require many hours of computa-

tional time on a modern workstation.) A number of studies

have therefore considered simpli®cations to the mixer geo-

metry and/or governing ¯ow equations to render the com-

putations more tractable. For example, fully-developed

creeping ¯ow has been considered in a partitioned pipe

mixer [10±12], which can be considered as a simpli®cation

of the Kenics mixer where the twist of successive mixing

elements is not alternated. An analytical solution for the

velocity ®eld could be derived, which enabled detailed

studies of the chaotic ¯ow behaviour. A number of studies

[13±15] have also treated creeping ¯ow in a twisted tape

mixer as a superposition of the fully-developed ¯ows cal-

culated for an in®nitely long element. The velocity ®elds

were determined using helical coordinates, with special

conditions applied for matching at the interface between

two mixing elements. The application of such calculations is

therefore restricted to mixer geometries for which the

elements are suf®ciently long and the in¯uence of the

junctions between elements is small.

More recently, computations have been performed by

solving the complete three-dimensional Navier±Stokes

equations for ¯ow in the Kenics mixer [16±22]. While

the majority of these studies have been restricted to creeping

¯ows, laminar ¯ow at higher ¯ow rates, for which inertial

effects are important, has also been considered [17,18,20].

Flow in the Kenics mixer has been observed to be differ

substantially for different Reynolds number regimes, with

non-creeping ¯ows being dominated by complex vortical

¯ow features. Not surprisingly, ¯uid mixing under these

conditions has been shown to exhibit signi®cantly different

characteristics, although it appears that chaotic advection

[23] is still responsible for mixing.

Due to the above-mentioned computer resource limita-

tions, mixer design optimization studies to date have gen-

erally been undertaken using the simpli®ed theory for the

twisted tape mixer [13±15]. In particular, it has been sug-

gested that an element twist angle less than the standard

1808 [13], or an aspect ratio smaller than the standard value

of L/a � 3 maintaining the standard twist rate [15], would

provide better mixing. These conclusions, however, should

be considered with caution, due to the underlying assump-

tions of the theory employed. In particular, the use of

approximate matching conditions at the interfaces between

mixing elements may signi®cantly in¯uence the determina-

tion of vortical structures at the leading edge of the ele-

ments. As previously indicated [18,19], the greatest

contribution to mixing ef®ciency in fact occurs within

the developing ¯ow in the vicinity of the element interfaces.

In addition, solutions of the complete Navier±Stokes equa-

tions [18,19] suggest that the velocity ®eld in a Kenics mixer

is far from that of fully developed ¯ow, especially in the ®rst

three and last elements.

To overcome these potential problems, a recent study has

been reported [21] of the optimization of a Kenics mixer for

creeping ¯ow conditions based on the resolution of the

complete Navier±Stokes equations. It was determined that,

maintaining the standard twist rate, an element twist angle

of around 1208 was required for optimal mixing, corre-

sponding to a smaller aspect ratio than for the standard

Kenics mixer. It was also determined in [21] that for

constant total twist angle, the mixing ef®ciency is indepen-

dent of the element aspect ratio; combined with the previous

result, this indicates that for a given total mixer length, the

mixing ef®ciency is maximized for an element twist angle

of around 1208. These conclusions are in qualitative agree-

ment with the earlier above-mentioned results based on a

twisted tape mixer.

It should be emphasized, however, that all previous

optimization studies have been restricted to creeping ¯ow

conditions. Since the ¯ow and mixing process are signi®-

cantly different for higher ¯ow rates, the optimal values of

mixer design parameters are not necessarily the same as for

creeping ¯ow.

In the present paper, a numerical study is presented with

the aim of optimizing the mixing ef®ciency of the Kenics

mixer for non-creeping ¯ow conditions. In principle, the

optimization of a number of different design parameters

would be of interest (e.g. element length and twist angle,

¯ow rate, ¯uid properties), since it would provide a com-

plete operational diagram for the mixer. However, due to

computational resource limitations, only the optimal value

of twist angle of the mixing elements has been determined

keeping all other geometrical characteristics unchanged,

Fig. 1. Perspective cutaway view of the six-element Kenics static mixer.
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and for only one ¯ow condition. In fact, the sizeable

computational resources necessary for this study has only

been available through the use of modern high-performance

parallel computer hardware and software. In Section 2, the

numerical methods employed to compute the ¯ow and

mixing characteristics are described. The qualitative and

quantitative results obtained are presented and discussed in

Section 3.

2. Numerical methods

The numerical simulation of the ¯ow and mixing in the

Kenics mixer has been performed via a two-step procedure.

In the ®rst step, the ¯ow velocity (and pressure) is com-

puted. These values are then used as input to the second step

that consists of the calculation of the particle trajectories

within the computed ¯ow ®elds.

2.1. Flow computation

The parallel ¯ow solver used in this study is based on a

multi-block code developed for the numerical simulation of

the 3D steady/unsteady, laminar/turbulent, incompressible

¯ow of a Newtonian ¯uid [18,24]. This code uses a

conventional Eulerian approach to solve the Reynolds-

averaged Navier±Stokes equations on block-structured

computational meshes.

The numerical method is based on a cell-centered ®nite

volume discretization with an arti®cial compressibility

method to couple the pressure and velocity ®elds [25].

For steady, laminar ¯ow, as considered in the present study,

the Navier±Stokes equations can be written as

@

@t

Z
V

IQ dV �
Z
@V

F~n dS �
Z
@V

G~n dS (1)

where I � diag(1/c2,1,1,1), Q � (p/�, u, v, w)T is the vector

of the primitive variables, and F and G are the ¯ux matrices

of the convection and diffusion terms. The arti®cial com-

pressibility coef®cient c2 is set equal to 3 max{u2 � v2 � w2},

which has been observed to provide optimal convergence

rates. A spatial discretization following the MUSCL

approach [26] is employed, using a second-order upwind

� scheme and the approximate Riemann solver of Roe [27]

for the convection terms, while the diffusion terms are

discretized using a central approximation. A `diagonal'

form of the ADI method [28] is used to solve the set of

discretized equations. Full details regarding the numerical

method employed in the present study can be found in [18].

Parallelism is achieved by dividing the computational

domain into a number of sub-domains, each sub-domain

being covered by a structured hexahedral-element mesh.

The ¯ow equations are resolved concurrently on this block-

structured mesh by assigning the computation for one block

to one processor. Communication between processors is

necessary to exchange data at the interface of neighbouring

blocks. The communication overhead is minimized by data

localization using two layers of halo cells surrounding each

block. Data are exchanged between blocks using message

passing via the PVM library, since this provides a good

combination of performance and portability [29]. Load

balancing is achieved by ensuring that each block has an

equal, or approximately equal, number of mesh cells.

Employing these techniques, a high parallel computational

ef®ciency has been attained [18,22].

Taking account of the two-fold rotational symmetry of the

mixer geometry about its axis, preliminary computations

[18] have shown that for the ¯ow conditions considered in

the present study, the ¯ow ®elds are also symmetric. Flow

computations have therefore been performed only in half of

the mixer. The computational meshes used in the present

study consist of a H-type mesh in the core of the pipe and an

O-type mesh near the pipe wall (see [18,22] for more

details). The mesh is composed of 784 cells in the cross-

section of each half of the mixer, with 60 cells in the axial

direction of each element. For the 6-element mixer con-

sidered in the present study, this corresponds to a total of

376 320 hexahedral cells for half the mixer geometry.

A uniform velocity pro®le is assumed at the entry of the

inlet pipe section, with a parabolic velocity pro®le char-

acteristic of Hagen±Poiseuille ¯ow being established at the

leading edge of the ®rst mixing element. At the exit of the

outlet pipe section a constant pressure pro®le is imposed.

No-slip boundary conditions are applied at all the solid wall

surfaces.

2.2. Particle tracking

To determine the ef®ciency of a chemical mixer, it is

necessary to establish means by which the ¯uid mixing can

be gauged both qualitatively and quantitatively. In the

present study, this was achieved by calculating the trajec-

tories of ¯uid particles in the ¯ow ®eld of the mixer. This

method avoids the problem of excessive numerical diffusion

that is observed if the species continuity equations are

solved [18].

For steady ¯ow, as considered in the present study,

particle trajectories correspond to streamlines. Some care

must be taken in integrating the equation describing particle

motion in order to retain a suf®cient degree of accuracy.

Preliminary tests have indicated that while lower order

schemes appear to provide acceptable results, they accent-

uate the problem of `lost' particles, that is, particle trajec-

tories that are trapped near a solid wall (where the local

velocity is zero) or leave the computational domain. For the

results presented in this paper, therefore, a four-stage

Runge±Kutta scheme was employed. In addition, to avoid

problems near stagnation points, the numerical integration

of the streamline equation was performed using a ®xed

spatial increment rather than a ®xed time step. For the

chosen value of the spatial increment, a minimum of
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12 000 integration steps were required to calculate each

particle trajectory through the mixer. With these considera-

tions, the number of lost particles was reduced to 1± 5%,

depending on the Reynolds number of the ¯ow and the

mixer geometry. No attempt was made to recuperate lost

particles by re-injection into the ¯ow ®eld, since this may

unduly perturb the mixing analysis.

To obtain an accurate global evaluation of the mixing, the

study of the trajectories of a large number of particles has

been undertaken via the use of a high-performance parallel

computer system. Since the particles are assumed to be non-

interacting, their trajectories can be calculated in an inde-

pendent manner, leading to simple parallel implementation

and high computational ef®ciencies. A detailed discussion

regarding parallelization issues for the calculation of par-

ticle trajectories in the static mixer can be found in [18,22].

Using this procedure, a total of 262 656 particles (for each

constituent ¯uid) has been considered in the present study.

At the entry of the inlet pipe section, the particles were

distributed uniformly in the half disc delineated by the line

traversing diametrically the mixer pipe at an angle of 908 to

the front edge of the ®rst mixing element. This can be

viewed as a simpli®ed model for the diametrical feeding of

the mixer with two component ¯uids. Particle trajectories

corresponding to only one of the ¯uids are calculated (and

plotted in the present paper); the trajectories associated with

the second ¯uid can be determined by two-fold rotational

symmetry about the mixer axis.

2.3. Numerical solution accuracy

It is important that the accuracy of numerical solutions be

analyzed before con®dence in the predictive ability of the

numerical techniques can be justi®ed. For the present study

of mixing under non-creeping ¯ow conditions, there is

unfortunately an absence of experimental data suf®ciently

detailed and accurate to undertake a complete validation of

the numerical results.While comparison with certain experi-

mental values of the pressure drop across the mixer mea-

sured for the standard element twist angle shows good

agreement over a range of ¯ow conditions (15 � Re � 280)

[18], wide variations in published experimental data [1±8]

render such comparisons unsuitable for detailed validation

purposes. More signi®cantly, good agreement with experi-

mental data for such a global measure is not suf®cient to

ensure that the complex mixing process has been accurately

simulated.

Two complementary approaches have therefore been

employed to provide an adequate level of con®dence in

the computed ¯ow ®elds. Firstly, independent numerical

simulations have been performed ± on the same computa-

tional mesh ± using a commercially-available CFD software

package, Fluent/UNS, for a selected number of ¯ow con-

ditions. A comparison of the resulting velocity ®elds has

shown excellent agreement [18]. Secondly, a detailed mesh

convergence study [22] has indicated that the computational

meshes employed in the present study are suf®ciently

re®ned to provide good numerical resolution. In addition,

a study conducted using different numbers of particles for

the mixing analysis [22] has demonstrated, as required, that

the results remain unchanged if the number of particles is

increased.

It is noted that the number of mesh cells used to compute

the ¯ow ®elds, and the number of particles employed in the

mixing analysis, is considerably greater than used in most

previous investigations. This is associated with the greater

complexity of the ¯ow for non-creeping ¯ow conditions.

Indeed, coarser meshes are not able to resolve adequately

the complex vortical ¯ow behaviour, and can lead to a

signi®cant loss of particles in the particle tracking calcula-

tions. In addition, the use of an inadequate number of

particles to analyze mixing can lead to the false illusion

of good mixing in the presence of the ®ne ¯ow structure

observed under non-creeping ¯ow conditions.

2.4. Computational resources

For the non-creeping ¯ow conditions considered in the

present study, both the ¯ow computation and particle track-

ing steps require sizeable computational resources to pro-

vide adequate accuracy in the numerical simulations. For

the present study, the 256-processor Cray T3D system

installed at the EPF-Lausanne was used. Generally, 64

processors were used for the ¯ow computation and 128

processors for the particle tracking. To obtain the results for

the optimization study presented in this paper, approxi-

mately 4800 processor-hours were required for the ¯ow

computations, and 3840 processor-hours for the particle

tracking. This corresponds to a total wall-clock time on

the Cray T3D of slightly greater than 4 days, or approxi-

mately 1 year on a modern workstation.

3. Numerical results

Numerical simulations have been performed for a Kenics

mixer with the characteristics listed in Table 1. (Note that

non-dimensional units are employed by the ¯ow solver.)

The empty inlet and outlet pipe sections were both chosen to

Table 1

Geometrical and flow characteristics used in the present study

Radius a

Element length L � 3a

Element thickness 0

Number of elements 6

Mixer length 18a

Inlet pipe 3a

Outlet pipe 3a

Total length 24a

Twist angle 08 � � � 3608
Reynolds number (based on radius) 100
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have the same length as the mixer elements. The elements

were considered to be in®nitely thin, both to facilitate mesh

generation and to avoid excessive mesh re®nement at the

leading and trailing edges of the elements necessary to

capture the associated ®ne-scale ¯ow behaviour. (Prelimin-

ary tests have indicated that this simpli®cation has little

in¯uence on the results obtained.) Due to the large compu-

tational resources required, only one ¯ow condition has

been considered (i.e. Re � 100, based on the inlet axial

velocity and pipe radius). Thirteen different values of twist

angle � between 08 and 3608 have been considered; since

the total mixer length and the number of elements have been

kept constant in these studies, this corresponds to 13 dif-

ferent values of element twist rate.

A detailed study [18] using various dynamical system

techniques (e.g. PoincareÂ sections, ®nite-time Lyapunov

exponents) has shown that for the standard twist angle of

1808, the ¯ow is globally chaotic for the chosen conditions.

No regular islands (consisting of segregated non-chaotic

regions) are apparent, as are observed for non-creeping

¯ows with lower Reynolds number (e.g. Re � 25). Such

observations are in qualitative agreement with those of [20].

(Note that in [20], the authors de®ne Re based on the pipe

diameter and not its radius.)

3.1. Flow fields

The ¯ow in the Kenics mixer is best represented by the

crosswise velocity in a helical coordinate system that

accounts for the local twist of the mixing elements [18].

In Fig. 2 are shown plots of the crosswise velocity computed

at an axial location near the end of the fourth mixing

element (i.e. end of second element pair) for six of the

13 twist angles considered. For this axial location, it has

been determined that the velocity ®elds are not in¯uenced

by either the inlet or outlet conditions. The plots shown in

Fig. 2 are therefore representative of the crosswise velocity

®elds that arise at the end of each mixing element pair in a

mixer containing a larger number of elements.

From the plots presented in Fig. 2, it can be seen that the

rotation of the ¯uid in the sense opposite to the local helical

twist of the mixing elements leads to the creation of a

vortical structure. Contrary to that observed for creeping

¯ow [12±16,19,21], a secondary vortex is also seen to

develop on the suction side of each element. This secondary

vortex, which is not apparent for small twist angles, pro-

gressively grows as � is increased, and eventually dom-

inates the crosswise velocity plot.

3.2. Particle distributions

The particle distributions computed near the end of the

last (i.e. sixth) mixing element for six of the 13 twist angles

considered are presented in Fig. 3. Comparing these plots

with those presented in Fig. 2 shows that the ¯ow structures

roll-up around the vortices. Such behaviour is similar to that

observed in a blinking vortex mixer [23]. As observed in the

crosswise velocity plots, these rolled-up ¯ow structures,

which are virtually non-existent for small twist angles, grow

as � is increased, and eventually dominate the cross-sec-

tional particle distribution plots. The increased rolling of the

structures around the ¯ow vortices results in thinner, more

elongated structures for larger twist angles. Qualitatively,

Fig. 3 therefore suggests that a higher degree of ¯uid mixing

is achieved for mixers with larger twist angle.

3.3. Quantitative mixing evaluation

A number of measures can be proposed to obtain a

quantitative evaluation of the ef®ciency of the mixing

Fig. 2. Crosswise velocity vectors in the helical coordinate system at an

axial location near the end of the fourth mixing element computed for

mixers with different twist angles.

Fig. 3. Plots of the positions of 262 656 particles at an axial location near

the end of the last (i.e. sixth) mixing element computed for mixers with

different twist angles.
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process. The ef®ciency can be related to the ratio of the

mixing quality and the energy required to perform the

mixing. We take the total pressure drop along the mixer

(de®ned as the difference between the average pressures at

the inlet and outlet planes of the mixer) as a measure of the

energy consumption. In many mixing applications, one is

concerned with the size of the largest unmixed region that

exists in the ¯uid. A practical measure of the quality of the

mixing can then be obtained by de®ning the 2D structure

radius at a given axial location, normalized to the pipe

radius, to correspond to the radius of the largest circle that

can be drawn around a particle of one of the component

species that does not contain any particles of the second

species. The structure radius is thus related to the size of the

¯ow structures, and corresponds to the striation thickness

generally measured experimentally.

The mixing ef®ciency can then be de®ned as

E � �ÿ�p rs�ÿ1
(2)

whereÿ�p is the total pressure drop along the mixer, and rs

is the structure radius at the end of the last (i.e. sixth) mixing

element.

As indicated above, Eq. (2) is not the only means of

de®ning the mixing ef®ciency, the most appropriate choice

being determined by the speci®c requirements of the mixer.

Rather than be concerned with the largest unmixed regions,

a more global value of the mixing quality may be appro-

priate, based for example on the crossection-averaged

structure radius. Alternately, measures of mixing quality

based on average rates of deformation of the ¯uid may be

appropriate, as employed in [19,20]. Such measures may

provide the most useful measure of mixing quality under

conditions for which large regions of segregated non-

chaotic ¯ow exist. Since for the conditions considered in

the present study the ¯ow is not dominated by regular

islands (although Fig. 3 suggests their presence for small

twist angles), the use of either local or global measures has

been found to lead to the same general conclusions [18].

Fig. 4(a) shows the computed dependence of the pressure

drop on the twist angle. As expected, for larger twist angle

the pressure drop along the mixer is greater, due to the

increased resistance of the ¯uid ¯ow through the mixer pipe.

This is a consequence of both the increased energy required

to generate the internal vortical ®elds, and the increased

frictional drag associated with the larger surface area of the

mixer elements.

Fig. 4(b) shows that as the twist angle is increased the

structure radius decreases substantially (note the logarith-

mic vertical scale). This is in agreement with the qualitative

observations of the particle distribution plots shown in Fig. 3.

As a result of the dependencies on twist angle of the

pressure drop and structure radius, Fig. 4(c) shows that a

clear maximum in the mixing ef®ciency E is computed near

� � 1808. For this value of twist angle, the mixer provides

close to its maximum mixing quality for a relatively modest

energy input.

4. Conclusion

In the present study, advanced CFD techniques have been

used as a design optimization tool for the Kenics static

mixer. The results obtained from a series of numerical

simulations for non-creeping ¯ow with Re � 100 have

shown that an optimal value of twist angle exists for which

the mixing ef®ciency is maximized. This optimal value is

close to the standard design angle of 1808. It should be

stressed that such a result is by no means obvious. Given the

complexity of the mixing process and its irregular depen-

dence on Reynolds number [18,20], some caution should be

taken as to the generality of this result for all operating

conditions. Indeed, previous optimization studies for creep-

ing ¯ow conditions [13,15,21] have concluded that a twist

angle signi®cantly less than 1808 provides optimal mixing.

A more complete parametric study is therefore required to

reveal the inherent complexity in the optimal operating

conditions of the Kenics mixer. Such a study would bene®t

from the inclusion of other design parameters of interest,

such as aspect ratio, number of mixing elements, Reynolds

number and ¯uid properties.

By resolving the complete Navier±Stokes equations for

three-dimensional ¯ow in the mixer, the present results

avoid the approximations and uncertainties associated with

Fig. 4. Dependence on the twist angle of (a) pressure drop along the

mixer, (b) structure radius at the mixer outlet, and (c) resulting mixing

efficiency.
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some of the previous numerical design studies. Unfortu-

nately, this is at the expense of greatly increased computa-

tional costs. For the non-creeping ¯ow conditions

considered, to obtain accurate numerical results in a reason-

able time necessitated the use of state-of-the-art computa-

tional resources that are generally not available in the

chemical process industry. Nevertheless, the current rapid

increase in affordable computational hardware together

with the growing capability of commonly-available CFD

software packages, should enable numerical design studies

such as that of the present paper to be performed on a regular

basis in the near future.
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